Electrochemical Simulation of the Current and Potential Response in Sliding Tribocorrosion
نویسندگان
چکیده
Valuable insights into the wear-corrosion behavior of metals, as well as into the tribocorrosion field through the development of simulation models of tribocorrosion experiments, can contribute in rationalizing wearaccelerated experiments and their open circuit potential (OCP) behavior under rubbing. These results demonstrate that mathematical models of controlled tribo-electrochemical contacts can complement the physical experiment and add valuable understanding to the tribological behavior of metals, alloys, and generally to materials in an electrochemically active environment. The excellent agreement of experimental wear data and the experimental OCP curves with the OCP simulations with time establishes the concepts underlying the galvanic coupling model as a valid methodological approach toward a quantitative description and mechanistic understanding of the tribo-electrochemical experiment. Besides analyzing stellite tribocorrosion, application of the model to Al alloy data has helped us quantify the relative contributions of chemical and mechanical wear and reveal the underlying synergy. Ti metal tribocorrosion under variable load has revealed that the contact pressure Pav, can reach much lower values within the experimental time domain and finally be the cause of interruption of the initial wear mechanism.
منابع مشابه
Influence of the sliding velocity and the applied potential on the corrosion and wear behavior of HC CoCrMo biomedical alloy in simulated body fluids.
The corrosion and tribocorrosion behavior of an as-cast high carbon CoCrMo alloy immersed in phosphate buffered solution (PBS) and phosphate buffered solution with bovine serum albumin (PBS+BSA) have been analyzed by electrochemical techniques and surface microscopy. After the electrochemical characterization of the alloy in both solutions, the sample was studied tribo-electrochemically (by ope...
متن کاملTribo-electrochemical characterization of metallic biomaterials for total joint replacement.
Knee and hip joint replacement implants involve a sliding contact between the femoral component and the tibial or acetabular component immersed in body fluids, thus making the metallic parts susceptible to tribocorrosion. Micro-motions occur at points of fixation leading to debris and ion release by fretting corrosion. β-Titanium alloys are potential biomaterials for joint prostheses due to the...
متن کاملTribocorrosion of Pulsed Plasma-Nitrided CoCrMo Implant Alloy
In the present study, a forged CoCrMo (ISO 5832-12) has been subjected to pulsed plasma treatment in a N2/H2 atmosphere at low temperatures (below 500 C). This treatment resulted in the formation of a layer composed by dispersed chromium nitride particles in a N-enriched metal matrix. The materials were tested for corrosion and tribocorrosion performance in 0.9 wt% NaCl at room temperature unde...
متن کاملDesign and Implementaion of Interior Permanent Magnet Synchronous Motor (IPMSM) Control based on Integral Terminal Sliding Mode Technique
Permanent Magnet Synchronous Motor because of high energy storage capability is very important in electrical drive industry. Speed control of this motor suffers from parameter variations such as variable inductance. In this paper, The Integral-Terminal Sliding Mode Control (ITSMC) method is used to control the speed (torque) along with d-axis current control. This method is like to classic slid...
متن کاملTribocorrosion Failure Mechanism of TiN/SiOx Duplex Coating Deposited on AISI304 Stainless Steel
TiN/SiOx duplex coatings were synthesized on AISI304 stainless steel by plasma immersion ion implantation and deposition (PIIID) followed by radio frequency magnetron sputtering (RFMS). The microstructure and tribocorrosion failure behaviors of the duplex coatings were investigated by X-ray diffraction, X-ray photoelectron spectroscopy, scanning electron microscopy, atomic force microscopy, rec...
متن کامل